If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-400x+10500=0
a = 3; b = -400; c = +10500;
Δ = b2-4ac
Δ = -4002-4·3·10500
Δ = 34000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34000}=\sqrt{400*85}=\sqrt{400}*\sqrt{85}=20\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-20\sqrt{85}}{2*3}=\frac{400-20\sqrt{85}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+20\sqrt{85}}{2*3}=\frac{400+20\sqrt{85}}{6} $
| -2(1-6n)=-32+7n | | 3(x−5)=3x+15 | | 27m=9*6 | | 2x=7*16 | | 3x+11=51−x | | 12+0.28x=16.20 | | 3x^2+90x-12,000=0 | | 3—4t+1—8=3—4(t+8) | | 2(0.5x+3)=1 | | 10y-5y-15=66.80 | | 7x+2+6x+3+70=180 | | x^2-25x-350=0 | | 3(2x-6)=2(2x+11) | | 39+2m=5(-7m+1)-3 | | 12x21=3(4x+6) | | 180=62+x+x | | 9(8d-5)=13=12d-2 | | 180-x+64+76=180 | | 12y-62=-8(y-22) | | 6^2x-1=12 | | 7x+2+44+55=180 | | 180-x+128=180 | | -4w-4=-12 | | 5x2+25x-1500=0 | | 7w=$7,63 | | 600+8x=1000 | | 10-3c=-1 | | 5(3x+9)-2x=15x-2(1x-5) | | x+.5x=600 | | 8(3g+2)-3g=3(5g-)-2 | | 400+12x=1000 | | Y=11x-180 |